Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ho, Tung-Yang | en_US |
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:36:02Z | - |
dc.date.available | 2014-12-08T15:36:02Z | - |
dc.date.issued | 2014-07-01 | en_US |
dc.identifier.issn | 0020-0255 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.ins.2014.02.087 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24394 | - |
dc.description.abstract | Many research on the WK-recursive network has been published during the past several years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian connectivity of the WK-recursive network. We use K(d, t) to denote the WK-recursive network of level t, each of which basic modules is a d-vertex complete graph, where d > 1 and t >= 1. The fault-tolerant hamiltonian connectivity H-f(k)(G) is defined to be the maximum integer k such that G is k fault-tolerant hamiltonian connected if G is hamiltonian connected and is undefined otherwise. In this paper, we prove that H-f(k)(K(d, t)) = d - 4 if d >= 4. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Hamiltonian connected | en_US |
dc.subject | WK-recursive network | en_US |
dc.title | Fault-tolerant hamiltonian connectivity of the WK-recursive networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ins.2014.02.087 | en_US |
dc.identifier.journal | INFORMATION SCIENCES | en_US |
dc.citation.volume | 271 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 236 | en_US |
dc.citation.epage | 245 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000336011900016 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.