Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chien, Li-Chu | en_US |
dc.contributor.author | Tsou, Tsung-Shan | en_US |
dc.date.accessioned | 2014-12-08T15:36:16Z | - |
dc.date.available | 2014-12-08T15:36:16Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.issn | 0094-9655 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24588 | - |
dc.identifier.uri | http://dx.doi.org/10.1080/00949655.2012.731409 | en_US |
dc.description.abstract | In this article, the parametric robust regression approaches are proposed for making inferences about regression parameters in the setting of generalized linear models (GLMs). The proposed methods are able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is demonstrated that with large samples, the normal and gamma regression models can be properly adjusted to become asymptotically valid for inferences about regression parameters under model misspecification. These adjusted regression models can provide the correct type I and II error probabilities and the correct coverage probability for continuous data, as long as the true underlying distributions have finite second moments. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | generalized linear models | en_US |
dc.subject | robust normal regression | en_US |
dc.subject | robust gamma regression | en_US |
dc.title | Parametric simultaneous robust inferences for regression coefficient under generalized linear models | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00949655.2012.731409 | en_US |
dc.identifier.journal | JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION | en_US |
dc.citation.volume | 84 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 850 | en_US |
dc.citation.epage | 867 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.identifier.wosnumber | WOS:000336834100010 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.