Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Li-Chuen_US
dc.contributor.authorTsou, Tsung-Shanen_US
dc.date.accessioned2014-12-08T15:36:16Z-
dc.date.available2014-12-08T15:36:16Z-
dc.date.issued2014en_US
dc.identifier.issn0094-9655en_US
dc.identifier.urihttp://hdl.handle.net/11536/24588-
dc.identifier.urihttp://dx.doi.org/10.1080/00949655.2012.731409en_US
dc.description.abstractIn this article, the parametric robust regression approaches are proposed for making inferences about regression parameters in the setting of generalized linear models (GLMs). The proposed methods are able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is demonstrated that with large samples, the normal and gamma regression models can be properly adjusted to become asymptotically valid for inferences about regression parameters under model misspecification. These adjusted regression models can provide the correct type I and II error probabilities and the correct coverage probability for continuous data, as long as the true underlying distributions have finite second moments.en_US
dc.language.isoen_USen_US
dc.subjectgeneralized linear modelsen_US
dc.subjectrobust normal regressionen_US
dc.subjectrobust gamma regressionen_US
dc.titleParametric simultaneous robust inferences for regression coefficient under generalized linear modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00949655.2012.731409en_US
dc.identifier.journalJOURNAL OF STATISTICAL COMPUTATION AND SIMULATIONen_US
dc.citation.volume84en_US
dc.citation.issue4en_US
dc.citation.spage850en_US
dc.citation.epage867en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000336834100010-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000336834100010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.