完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Yu-Chiaen_US
dc.contributor.authorChen, An-Pinen_US
dc.date.accessioned2014-12-08T15:36:16Z-
dc.date.available2014-12-08T15:36:16Z-
dc.date.issued2014-08-22en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2014.01.026en_US
dc.identifier.urihttp://hdl.handle.net/11536/24604-
dc.description.abstractIn this study, a novel procedure combining computational intelligence and statistical methodologies is proposed to improve the accuracy of minimum-variance optimal hedge ratio (OHR) estimation over various hedging horizons. The time series of financial asset returns are clustered hierarchically using a growing hierarchical self-organizing map (GHSOM) based on the dynamic behaviors of market fluctuation extracted by measurement of variances, covariance, price spread, and their first and second differences. Instead of using original observations, observations with similar patterns in the same cluster and weighted by a resample process are collected to estimate the OHR. Four stock market indexes and related futures contracts, including Taiwan Weighted Index (TWI), Standard & Poor\'s 500 Index (S&P 500), Financial Times Stock Exchange 100 Index (FUSE 100), and NIKKEI 255 Index, are adopted in empirical experiments to investigate the correlation between hedging horizon and performance. Results of the experiments demonstrate that the proposed approach can significantly improve OHR decisions for mid-term and long-term hedging compared with traditional ordinary least squares and naive models. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectOptimal hedge ratioen_US
dc.subjectFinancial time seriesen_US
dc.subjectGHSOMen_US
dc.subjectCluster analysisen_US
dc.titleA clustering time series model for the optimal hedge ratio decision makingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2014.01.026en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume138en_US
dc.citation.issueen_US
dc.citation.spage358en_US
dc.citation.epage370en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000337261700037-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000337261700037.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。