完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYeh, JYen_US
dc.contributor.authorKe, HRen_US
dc.contributor.authorYang, WPen_US
dc.contributor.authorMeng, IHen_US
dc.date.accessioned2014-12-08T15:36:26Z-
dc.date.available2014-12-08T15:36:26Z-
dc.date.issued2005-01-01en_US
dc.identifier.issn0306-4573en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipm.2004.04.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/24779-
dc.description.abstractThis paper proposes two approaches to address text summarization: modified corpus-based approach (MCBA) and LSA-based T.R.M. approach (LSA + T.R.M.). The first is a trainable summarizer, which takes into account several features, including position, positive keyword, negative keyword, centrality, and the resemblance to the title, to generate summaries. Two new ideas are exploited: (1) sentence positions are ranked to emphasize the significances of different sentence positions, and (2) the score function is trained by the genetic algorithm (GA) to obtain a suitable combination of feature weights. The second uses latent semantic analysis (LSA) to derive the semantic matrix of a document or a corpus and uses semantic sentence representation to construct a semantic text relationship map. We evaluate LSA + T.R.M. both with single documents and at the corpus level to investigate the competence of LSA in text summarization. The two novel approaches were measured at several compression rates on a data corpus composed of 100 political articles. When the compression rate was 30%, an average f-measure of 49% for MCBA, 52% for MCBA + GA, 44% and 40% for LSA + T.R.M. in single-document and corpus level were achieved respectively. (C) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecttext summarizationen_US
dc.subjectcorpus-based approachen_US
dc.subjectlatent semantic analysisen_US
dc.subjecttext relationship mapen_US
dc.titleText summarization using a trainable summarizer and latent semantic analysisen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.ipm.2004.04.003en_US
dc.identifier.journalINFORMATION PROCESSING & MANAGEMENTen_US
dc.citation.volume41en_US
dc.citation.issue1en_US
dc.citation.spage75en_US
dc.citation.epage95en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department圖書館zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentLibraryen_US
dc.identifier.wosnumberWOS:000224486000006-
顯示於類別:會議論文


文件中的檔案:

  1. 000224486000006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。