標題: Characteristics of Conductive Polymer/Silicon Heterojunction Solar Cells with Periodic Nanostructures
作者: Huang, Yang-Yue
Pan, Ward
Lai, Yi-Chun
Yang, T. T.
Chen, Riqui
Chirenjeevi, Krishnan
Weng, Wei-Shen
Yu, Peichen
Meng, Hsin-Fei
Charlton, Martin
光電工程學系
Department of Photonics
關鍵字: hybrid solar cell;silicon nanorods;damage removal etching
公開日期: 2013
摘要: Mono- and multi-crystalline silicon photovoltaics currently still hold more than 80% market share because of the non-toxic, abundant material resources used, and their long-term stabilities. However, the cost of solar power is still more than three times that of fossil fuels, which necessitates a further reduction to accelerate its widespread use. It has been estimated that cell fabrication consumes 30% of the total manufacturing cost due to energy intensive semiconductor processes, such as high temperature furnace for doping, electrodes co-firing, high-vacuum chemical deposition, etc. Therefore, the organic-inorganic hybrid cell concept has been proposed to take advantage of the solution-based processes for rapid and low-cost production and the wide absorption spectrum of silicon. In this work, we demonstrate a hybrid heterojunction solar cell based on the structure of conductive polymer PEDOT:PSS spun cast on n-type crystalline silicon nanorod (SiNR) arrays with periodic arrangements. The nanorod arrays are fabricated by electron beam (E-beam) lithography followed by reactive-ion etching (RIE), which show capability to enhance light harvesting. In addition, SiNRs and PEDOT:PSS can form core-shell structure that provides a large p-n junction area for carrier separation and collection. We measured the optical and photovoltaic characteristics of these devices under a simulated class A solar simulator with a calibrated illumination intensity of 1000 W/m(2) for the AM1.5G solar spectrum. A post-RIE damage removal etching (DRE) is subsequently introduced in order to mitigate the surface recombination issues and also alter the surface reflection due to modifications in the nanorod side-wall profile. Finally, we show that the DRE treatment can effectively recover the carrier lifetime and dark current-voltage characteristics of SiNRs hybrid solar cells to resemble the planar counterpart without RIE damages.
URI: http://hdl.handle.net/11536/25003
ISBN: 978-1-4799-3299-3
ISSN: 0160-8371
期刊: 2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC)
起始頁: 1028
結束頁: 1030
顯示於類別:會議論文