完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPan, Huai-Teen_US
dc.contributor.authorHuang, Yang-Yueen_US
dc.contributor.authorWeng, Wei-Shengen_US
dc.contributor.authorChen, Po-Hanen_US
dc.contributor.authorCheng, Kai-Yuanen_US
dc.contributor.authorLai, Yi-Chunen_US
dc.contributor.authorTsai, Chia-Yingen_US
dc.contributor.authorYu, Peichenen_US
dc.contributor.authorMeng, Hsin-Feien_US
dc.date.accessioned2014-12-08T15:36:39Z-
dc.date.available2014-12-08T15:36:39Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4799-3299-3en_US
dc.identifier.issn0160-8371en_US
dc.identifier.urihttp://hdl.handle.net/11536/25004-
dc.description.abstractHybrid solar cells combining organic polymers and inorganic semiconductors are extensively investigated recently due to relatively inexpensive cost and simple fabrication processes. In this work, we demonstrate organic/inorganic hybrid heterojunction solar cells based on gallium arsenide (GaAs) substrate and conjugated polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). First we performed a one-dimensional device simulation based on a self-consistent Poisson and drift-diffusion solver to survey the band alignment between the conductive polymer and GaAs materials and achieve a practical device design. Second, for device fabrication, we prepare a cleaned one-side-polished planar GaAs wafer, followed by thermal evaporation of back-side metal using either Aluminum or titanium/gold as the cathode. Next, PEDOT:PSS is spun-cast onto the wafer and annealed at 115 degrees C for 10 minutes. To improve carrier conduction, we use a self-assembled polystyrene (PS) nanosphere lithography technique to form the sacrificial mask layer, and perform anisotropic metal-assisted chemical etching on GaAs substrates. Various nanostructures such as nanowires or nanorods allow the conformal p-n heterojunction formation at the interface of organic/inorganic semiconductors, which can be beneficial for both light absorption and carrier collection. The optical and electrical characteristics such as reflectance, current voltage, and external quantum efficiency are measured. Currently, we achieve a 3.2% power conversion efficiency with an open-circuit voltage of 0.565 V, short-circuit current of 8.95 mA/cm(2), and a fill factor of 63.29% under a simulated AM1.5G illumination for planar substrates. Device fabrication with GaAs nanowires is still in process and more data will be presented.en_US
dc.language.isoen_USen_US
dc.subjectheterojunctionen_US
dc.subjectGallium arsenideen_US
dc.subjecthybrid solar cellsen_US
dc.subjectnanostructureen_US
dc.subjectmetal-assisted chemical etchingen_US
dc.subjectanisotropic etchingen_US
dc.titleConductive Polymer/GaAs Hybrid Heterojunction Photovoltaic Devicesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC)en_US
dc.citation.spage1077en_US
dc.citation.epage1079en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000340054100238-
顯示於類別:會議論文