Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiou, Tao-Weien_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.contributor.authorLin, Yi-Bingen_US
dc.date.accessioned2014-12-08T15:36:41Z-
dc.date.available2014-12-08T15:36:41Z-
dc.date.issued2014-09-01en_US
dc.identifier.issn1432-7643en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00500-013-1218-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/25038-
dc.description.abstractProfiling network traffic pattern is an important approach for tackling network security problem. Based on campus network infrastructure, we propose a new method to identify randomly generated domain names and pinpoint the potential victim groups. We characterize normal domain names with the so called popular 2gram (2 consecutive characters in a word) to distinguish between active and nonexistent domain names. We also track the destination IPs of sources IPs and analyze their similarity of connection pattern to uncover potential anomalous group network behaviors. We apply the Hadoop technique to deal with the big data of network traffic and classify the clients as victims or not with the spectral clustering method.en_US
dc.language.isoen_USen_US
dc.subjectClusteringen_US
dc.subjectMachine learningen_US
dc.subjectJaccard similarityen_US
dc.subjectROC curveen_US
dc.subjectDenial of serviceen_US
dc.subjectBig dataen_US
dc.titleNetwork security management with traffic pattern clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00500-013-1218-0en_US
dc.identifier.journalSOFT COMPUTINGen_US
dc.citation.volume18en_US
dc.citation.issue9en_US
dc.citation.spage1757en_US
dc.citation.epage1770en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000340498800010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000340498800010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.