Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorChen, Kuan-Weien_US
dc.contributor.authorHo, Shinn-Jangen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2014-12-08T15:04:00Z-
dc.date.available2014-12-08T15:04:00Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-1822-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/2508-
dc.identifier.urihttp://dx.doi.org/10.1109/CEC.2008.4631172en_US
dc.description.abstractIt is desirable to infer cellular dynamic regulation networks from gene expression profiles to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering, and pharmaceutics. The S-system model is suitable to characterize biochemical network systems and capable of analyzing the regulatory system dynamics. To cope with the problem "multiplicity of solutions", a sufficient amount of data sets of time-series gene expression profiles were often used. An efficient newly-developed method iTEA was proposed to effectively obtain S-system models from a large number (e.g., 15) of simulated data sets with/without noise. In this study, we propose an extended optimization method (named iTEAP) based on iTEA to infer the S-system models of genetic networks from a time-series real data set of gene expression profiles (using SOS DNA microarray data in E. coli as an example). The algorithm iTEAP generated additionally multiple data sets of gene expression profiles by perturbing the given data set. The results reveal that 1) iTEAP can obtain S-system models with high-quality profiles to best fit the observed profiles; 2) the performance of using multiple data sets is better than that of using a single data set in terms of solution quality, and 3) the effectiveness of iTEAP using a single data set is close to that of iTEA using two real data sets.en_US
dc.language.isoen_USen_US
dc.titleInferring S-system Models of Genetic Networks from a Time-series Real Data Set of Gene Expression Profilesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/CEC.2008.4631172en_US
dc.identifier.journal2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8en_US
dc.citation.spage2788en_US
dc.citation.epage2793en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000263406501170-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000263406501170.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.