Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, HLen_US
dc.contributor.authorKao, HYen_US
dc.date.accessioned2014-12-08T15:36:45Z-
dc.date.available2014-12-08T15:36:45Z-
dc.date.issued2005-01-01en_US
dc.identifier.issn0305-0548en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0305-0548(03)00204-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/25110-
dc.description.abstractThis work proposes a novel approach for solving abductive reasoning problems in Bayesian networks involving fuzzy parameters and extra constraints. The proposed method formulates abduction problems using nonlinear programming. To maximize the sum of the fuzzy membership functions subjected to various constraints, such as boundary, dependency and disjunctive conditions, unknown node belief propagation is completed. The model developed here can be built on any exact propagation methods, including clustering, joint tree decomposition, etc. (C) 2003 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectabductive reasoningen_US
dc.subjectBayesian networksen_US
dc.subjectfuzzy parametersen_US
dc.subjectoptimizationen_US
dc.subjectconstraintsen_US
dc.titleConstrained abductive reasoning with fuzzy parameters in Bayesian networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0305-0548(03)00204-1en_US
dc.identifier.journalCOMPUTERS & OPERATIONS RESEARCHen_US
dc.citation.volume32en_US
dc.citation.issue1en_US
dc.citation.spage87en_US
dc.citation.epage105en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000223971300005-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000223971300005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.