Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:36:47Z-
dc.date.available2014-12-08T15:36:47Z-
dc.date.issued2014-10-15en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2014.07.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/25157-
dc.description.abstractWe give a complete characterization of nonnegative integers j and k and a positive integer n for which there is an n-by-n matrix with its power partial isometry index equal to j and its ascent equal to k. Recall that the power partial isometry index p(A) of a matrix A is the supremum, possibly infinity, of nonnegative integers j such that I, A, A(2), . . . , A(j) are all partial isometries while the ascent a(A) of A is the smallest integer k >= 0 for which ker A(k) equals ker A(k)+1. It was known before that, for any matrix A, either p(A) <= min{a(A), n - 1} or p(A) = infinity. In this paper, we prove more precisely that there is an n-by-n matrix A such that p(A) = j and a(A) = k if and only if one of the following conditions holds: (a) j = k <= n - 1, (b) j <= k - 1 and j+k <= n - 1, or (c) j <= k - 2 and j+ k = n. This answers a question we asked in a previous paper. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPartial isometryen_US
dc.subjectPower partial isometryen_US
dc.subjectPower partial isometry indexen_US
dc.subjectAscenten_US
dc.subjectS-n-matrixen_US
dc.subjectJordan blocken_US
dc.titlePower partial isometry index and ascent of a finite matrixen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2014.07.001en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume459en_US
dc.citation.issueen_US
dc.citation.spage136en_US
dc.citation.epage144en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000341472000009-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000341472000009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.