完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLin, Yuan-Pinen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:36:51Z-
dc.date.available2014-12-08T15:36:51Z-
dc.date.issued2014-03-01en_US
dc.identifier.issn1534-4320en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNSRE.2013.2293139en_US
dc.identifier.urihttp://hdl.handle.net/11536/25250-
dc.description.abstractRecently, successful applications of independent component analysis (ICA) to electroencephalographic (EEG) signals have yielded tremendous insights into brain processes that underlie human cognition. Many studies have further established the feasibility of using independent processes to elucidate human cognitive states. However, various technical problems arise in the building of an online brain-computer interface (BCI). These include the lack of an automatic procedure for selecting independent components of interest (ICi) and the potential risk of not obtaining a desired ICi. Therefore, this study proposes an ICi-ensemble method that uses multiple classifiers with ICA processing to improve upon existing algorithms. The mechanisms that are used in this ensemble system include: 1) automatic ICi selection; 2) extraction of features of the resultant ICi; 3) the construction of parallel pipelines for effectively training multiple classifiers; and a 4) simple process that combines the multiple decisions. The proposed ICi-ensemble is demonstrated in a typical BCI application, which is the monitoring of participants\' cognitive states in a realistic sustained-attention driving task. The results reveal that the proposed ICi-ensemble outperformed the previous method using a single ICi with (91.6% versus 84.3%) in the cognitive state classification. Additionally, the proposed ICi-ensemble method that characterizes the EEG dynamics of multiple brain areas favors the application of BCI in natural environments.en_US
dc.language.isoen_USen_US
dc.subjectBrain-computer interface (BCI)en_US
dc.subjectindependent component analysis (ICA)en_US
dc.subjectmultiple classifier systemen_US
dc.titleIndependent Component Ensemble of EEG for Brain-Computer Interfaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNSRE.2013.2293139en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERINGen_US
dc.citation.volume22en_US
dc.citation.issue2en_US
dc.citation.spage230en_US
dc.citation.epage238en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department生物科技學系zh_TW
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000342078300004-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000342078300004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。