完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Ming-Chihen_US
dc.contributor.authorWang, Yen-Poen_US
dc.contributor.authorChang, Ming-Lianen_US
dc.date.accessioned2019-04-03T06:40:48Z-
dc.date.available2019-04-03T06:40:48Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn1537-744Xen_US
dc.identifier.urihttp://dx.doi.org/10.1155/2014/879341en_US
dc.identifier.urihttp://hdl.handle.net/11536/25405-
dc.description.abstractA deterministic-stochastic subspace identification method is adopted and experimentally verified in this study to identify the equivalent single-input-multiple-output system parameters of the discrete-time state equation. The method of damage locating vector (DLV) is then considered for damage detection. A series of shaking table tests using a five-storey steel frame has been conducted. Both single and multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged counterpart has also been studied. This study gives further insights into the scheme in terms of effectiveness, robustness, and limitation for damage localization of frame systems.en_US
dc.language.isoen_USen_US
dc.titleDamage Detection of Structures Identified with Deterministic-Stochastic Models Using Seismic Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2014/879341en_US
dc.identifier.journalSCIENTIFIC WORLD JOURNALen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000343448300001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 77a200ef9277d80414ec8cc62baa2858.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。