完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHo, SYen_US
dc.contributor.authorShu, LSen_US
dc.contributor.authorChen, JHen_US
dc.date.accessioned2014-12-08T15:37:11Z-
dc.date.available2014-12-08T15:37:11Z-
dc.date.issued2004-12-01en_US
dc.identifier.issn1089-778Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TEVC.2004.835176en_US
dc.identifier.urihttp://hdl.handle.net/11536/25561-
dc.description.abstractThis paper proposes two intelligent evolutionary algorithms IEA and IMOEA using a novel intelligent gene collector (IGC) to solve single and multiobjective large parameter optimization problems, respectively. IGC is the main phase in an intelligent recombination operator of IEA and IMOEA. Based on orthogonal experimental design, IGC uses a divide-and-conquer approach, which consists of adaptively dividing two individuals of parents into N pairs of gene segments, economically identifying the potentially better one of two gene segments of each pair, and systematically obtaining a potentially good approximation to the best one of all combinations using at most 2N fitness evaluations. IMOEA utilizes a novel generalized Pareto-based scale-independent fitness function for efficiently finding a set of Pareto-optimal solutions to a multiobjective optimization problem. The advantages of IEA and IMOEA are their simplicity, efficiency, and flexibility. It is shown empirically that IEA and IMOEA have high performance in solving benchmark functions comprising many parameters, as compared with some existing EAs.en_US
dc.language.isoen_USen_US
dc.subjectevolutionary algorithm (EA)en_US
dc.subjectgenetic algorithm (GA)en_US
dc.subjectintelligent gene collector (IGC)en_US
dc.subjectmultiobjective optimizationen_US
dc.subjectorthogonal experimental designen_US
dc.titleIntelligent evolutionary algorithms for large parameter optimization problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TEVC.2004.835176en_US
dc.identifier.journalIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATIONen_US
dc.citation.volume8en_US
dc.citation.issue6en_US
dc.citation.spage522en_US
dc.citation.epage541en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000226379600002-
dc.citation.woscount119-
顯示於類別:期刊論文


文件中的檔案:

  1. 000226379600002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。