Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, HYen_US
dc.contributor.authorChen, RJen_US
dc.date.accessioned2014-12-08T15:01:24Z-
dc.date.available2014-12-08T15:01:24Z-
dc.date.issued1997-10-14en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://hdl.handle.net/11536/255-
dc.description.abstractWe embed cycles into IEH graphs. First, IEH graphs are proved to be Hamiltonian except when they are of size 2(n) -1 for all n greater than or equal to 2. Next, we show that for an IEH graph of size N, an arbitrary cycle of even length N-e where 3 < N-e < N is found. We also find an arbitrary cycle of odd length N-o where 2 < N-o < N if and only if a node of this graph has at least one forward 2-Inter-Cube (IC) edges. These results help describe the whole cycle structure in IEH graphs. (C) 1997 Elsevier Science B.V.en_US
dc.language.isoen_USen_US
dc.subjecthypercubesen_US
dc.subjectembeddingen_US
dc.subjectHamiltonian cyclesen_US
dc.subjectIncrementally Extensible Hypercubesen_US
dc.subjectinterconnection networksen_US
dc.titleEmbedding cycles in IEH graphsen_US
dc.typeArticleen_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume64en_US
dc.citation.issue1en_US
dc.citation.spage23en_US
dc.citation.epage27en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
Appears in Collections:Articles


Files in This Item:

  1. A1997YG01100004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.