完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, LAen_US
dc.contributor.authorTran, LTen_US
dc.contributor.authorLin, LCen_US
dc.date.accessioned2014-12-08T15:37:17Z-
dc.date.available2014-12-08T15:37:17Z-
dc.date.issued2004-12-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2003.09.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/25622-
dc.description.abstractPopulational conditional quantiles in terms of percentage alpha are useful as indices for identifying outliers. We propose a class of symmetric quantiles for estimating unknown nonlinear regression conditional quantiles. In large samples, symmetric quantiles are more efficient than regression quantiles considered by Koenker and Bassett (Econometrica 46 (1978) 33) for small or large values of alpha, when the underlying distribution is symmetric, in the sense that they have smaller asymptotic variances. Symmetric quantiles play a useful role in identifying outliers. In estimating nonlinear regression parameters by symmetric trimmed means constructed by symmetric quantiles, we show that their asymptotic variances can be very close to (or can even attain) the Cramer-Rao lower bound under symmetric heavy-tailed error distributions, whereas the usual robust and nonrobust estimators cannot. (C) 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectnonlinear regressionen_US
dc.subjectregression quantileen_US
dc.subjecttrimmed meanen_US
dc.titleSymmetric regression quantile and its application to robust estimation for the nonlinear regression modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2003.09.014en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume126en_US
dc.citation.issue2en_US
dc.citation.spage423en_US
dc.citation.epage440en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000224224300003-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000224224300003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。