完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, CHen_US
dc.contributor.authorLin, CKen_US
dc.contributor.authorHuang, HMen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:37:26Z-
dc.date.available2014-12-08T15:37:26Z-
dc.date.issued2004-10-16en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2004.06.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/25752-
dc.description.abstractA k-container C(u, v) of a graph G is a set of k disjoint paths joining u to v. A k-container C(u, v) is a k*-container if every vertex of G is incident with a path in C(u, v). A bipartite graph G is k*-laceable if there exists a k*-container between any two vertices u, v from different partite set of G. A bipartite graph G with connectivity k is super laceable if it is i*-laceable for all i less than or equal to k. A bipartite graph G with connectivity k is f-edge fault-tolerant super laceable if G - F is i*-laceable for any 1 less than or equal to i less than or equal to k - f and for any edge subset F with F = f < k - 1. In this paper, we prove that the hypercube graph Q(r) is super laceable. Moreover, Qr is f-edge fault-tolerant super laceable for any f less than or equal to r - 2. (C) 2004 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthypercubeen_US
dc.subjectHamiltonianen_US
dc.subjectHamiltonian laceableen_US
dc.subjectconnectivityen_US
dc.subjectfault toleranceen_US
dc.titleThe super laceability of the hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2004.06.006en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume92en_US
dc.citation.issue1en_US
dc.citation.spage15en_US
dc.citation.epage21en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000223839000003-
dc.citation.woscount25-
顯示於類別:期刊論文


文件中的檔案:

  1. 000223839000003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。