完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Ying-Yuanen_US
dc.contributor.authorChen, Liang-Yien_US
dc.contributor.authorChang, Chun-Hsiangen_US
dc.contributor.authorSun, Yu-Hsuanen_US
dc.contributor.authorCheng, Yun-Weien_US
dc.contributor.authorKe, Min-Yungen_US
dc.contributor.authorLu, Yu-Hsinen_US
dc.contributor.authorKuo, Hao-Chungen_US
dc.contributor.authorHuang, JianJangen_US
dc.date.accessioned2014-12-08T15:37:37Z-
dc.date.available2014-12-08T15:37:37Z-
dc.date.issued2011-01-28en_US
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0957-4484/22/4/045202en_US
dc.identifier.urihttp://hdl.handle.net/11536/25866-
dc.description.abstractFor InGaN/GaN based nanorod devices using a top-down etching process, the optical output power is affected by non-radiative recombination due to sidewall defects (which decrease light output efficiency) and the mitigated quantum confined Stark effect (QCSE) due to strain relaxation (which increases internal quantum efficiency). Therefore, the exploration of low-temperature optical behaviors of nanorod light emitting diodes (LEDs) will help identify the correlation between these two factors. In this work, low-temperature electroluminescent (EL) spectra of InGaN/GaN nanorod arrays were explored and compared with those of planar LEDs. The nanorod LED exhibits a much higher optical output percentage increase when the temperature decreases. The increase is mainly attributed to the increased carriers in the quantum wells for radiative recombination. Also, due to a better spatial overlap of electrons and holes in the quantum wells, the increased number of carriers can be more efficiently recombined in the nanorod device. Next, while the nanorod array shows nearly constant peak energy in the EL spectra at various injection currents at the temperature of 300 K, a blue shift has been observed at 190 K. The results suggest that with less non-radiative recombination and thus more carriers in the quantum wells, carrier screening and band filling still prevail in the partially strain relaxed nanorods. Moreover, when the temperature drops to 77 K, the blue shift of both nanorod and planar devices disappears and the optical output power decreases since there are fewer carriers in the quantum wells for radiative recombination.en_US
dc.language.isoen_USen_US
dc.titleInvestigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arraysen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0957-4484/22/4/045202en_US
dc.identifier.journalNANOTECHNOLOGYen_US
dc.citation.volume22en_US
dc.citation.issue4en_US
dc.citation.epageen_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000285455200003-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000285455200003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。