標題: | GLOBAL SYNCHRONIZATION AND ASYMPTOTIC PHASES FOR A RING OF IDENTICAL CELLS WITH DELAYED COUPLING |
作者: | Shih, Chih-Wen Tseng, Jui-Pin 應用數學系 Department of Applied Mathematics |
關鍵字: | neural network;delay;synchronization;oscillation;multistability |
公開日期: | 2011 |
摘要: | We consider a neural network which consists of a ring of identical neurons coupled with their nearest neighbors and is subject to self-feedback delay and transmission delay. We present an iteration scheme to analyze the synchronization and asymptotic phases for the system. Delay-independent, delay-dependent, and scale-dependent criteria are formulated for the global synchronization and global convergence. Under this setting, the possible asymptotic dynamics include convergence to single equilibrium, multiple equilibria, and synchronous oscillation. The study aims at elucidating the effects from the scale of network, self-decay, self-feedback strength, coupling strength, and delay magnitudes upon synchrony, convergent dynamics, and oscillation of the network. The disparity between the contents of synchrony induced by distinct factors is investigated. Two different types of multistable dynamics are distinguished. Moreover, oscillation and desynchronization induced by delays are addressed. We answer two conjectures in the literature. |
URI: | http://hdl.handle.net/11536/25928 http://dx.doi.org/10.1137/10080885X |
ISSN: | 0036-1410 |
DOI: | 10.1137/10080885X |
期刊: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
Volume: | 43 |
Issue: | 4 |
起始頁: | 1667 |
結束頁: | 1697 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.