標題: DATA-DRIVEN EFFICIENT ESTIMATORS FOR A PARTIALLY LINEAR-MODEL
作者: CHEN, H
SHIAU, JJH
統計學研究所
Institute of Statistics
關鍵字: PARTIAL SPLINES;SEMIPARAMETRIC REGRESSION;SMOOTHING SPLINES;RATE OF CONVERGENCE;PARTIAL REGRESSION;GENERALIZED CROSS VALIDATION;MALLOWS CL;EFFICIENT ESTIMATORS
公開日期: 1-三月-1994
摘要: Chen and Shiau showed that a two-stage spline smoothing method and the partial regression method lead to efficient estimators for the parametric component of a partially linear model when the smoothing parameter is a deterministic sequence tending to zero at an appropriate rate. This paper is concerned with the large-sample behavior of these estimators when the smoothing parameter is chosen by the generalized cross validation (GCV) method or Mallows' C(L). Under mild conditions, the estimated parametric component is asymptotically normal with the usual parametric rate of convergence for both spline estimation methods. As a by-product, it is shown that the ''optimal rate' for the smoothing parameter, with respect to expected average squared error, is the same for the two estimation methods as it is for ordinary smoothing splines.
URI: http://dx.doi.org/10.1214/aos/1176325366
http://hdl.handle.net/11536/2596
ISSN: 0090-5364
DOI: 10.1214/aos/1176325366
期刊: ANNALS OF STATISTICS
Volume: 22
Issue: 1
起始頁: 211
結束頁: 237
顯示於類別:期刊論文


文件中的檔案:

  1. A1994NH41200010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。