完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chang-Paoen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.date.accessioned2014-12-08T15:37:53Z-
dc.date.available2014-12-08T15:37:53Z-
dc.date.issued2011en_US
dc.identifier.issn0308-1087en_US
dc.identifier.urihttp://hdl.handle.net/11536/26046-
dc.identifier.urihttp://dx.doi.org/10.1080/03081080903485694en_US
dc.description.abstractLet A (a(n,k))(n,k >= 0) be a non-negative matrix. Denote by L(p,q)(A) the supremum of those L satisfying the following inequality: [GRAPHICS] The purpose of this article is to establish a Bennett-type formula for parallel to H(mu)(0)parallel to(down arrow)(p,p) and a Hardy-type formula for L(p,p)(down arrow)(H(mu)(alpha)) and L(p,p)H((alpha)(mu)), where H(mu)(alpha) is a generalized Hausdorff matrix and 0 < p <= 1. Similar results are also established for L(p,p)(H(mu)(alpha)) and L(p,p)H(((alpha)(mu))(t)) for other ranges of p and q. Our results extend [ Chen and Wang, Lower bounds of Copson type for Hausdorff matrices, Linear Algebra Appl. 422 ( 2007), pp. 208-217] and [ Chen and Wang, Lower bounds of Copson type for Hausdorff matrices: II, Linear Algebra Appl. 422 ( 2007) pp. 563-573] from H(mu)(0) to H(mu)(alpha) with alpha >= 0 and completely solve the value problem of parallel to H(mu)(0)parallel to(down arrow)(p,p), L(p,p)(down arrow)(H(mu)(alpha)), L(p,p)H((alpha)(mu)) and L(p,p)H(((alpha)(mu))(t)) for alpha is an element of N boolean OR {0}.en_US
dc.language.isoen_USen_US
dc.subjectoperator normsen_US
dc.subjectlower bounden_US
dc.subjectgeneralized Hausdorff matricesen_US
dc.titleOperator norms and lower bounds of generalized Hausdorff matricesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081080903485694en_US
dc.identifier.journalLINEAR & MULTILINEAR ALGEBRAen_US
dc.citation.volume59en_US
dc.citation.issue3en_US
dc.citation.spage321en_US
dc.citation.epage337en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000287730400010-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000287730400010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。