Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuang, Jonqen_US
dc.contributor.authorLi, Chin-Lungen_US
dc.date.accessioned2014-12-08T15:37:59Z-
dc.date.available2014-12-08T15:37:59Z-
dc.date.issued2011-01-01en_US
dc.identifier.issn0022-2488en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.3525802en_US
dc.identifier.urihttp://hdl.handle.net/11536/26073-
dc.description.abstractThe wavelet transform method originated by Wei et al. [Phys. Rev. Lett. 89, 284103.4 (2002)] was proved [Juang and Li, J. Math. Phys. 47, 072704.16 (2006); Juang et al., J. Math. Phys. 47, 122702.11 (2006); Shieh et al., J. Math. Phys. 47, 082701.10 (2006)] to be an effective tool to reduce the order of coupling strength for coupled chaotic systems to acquire the synchrony regardless the size of oscillators. In Juang et al., [IEEE Trans. Circuits Syst., I: Regul. Pap. 56, 840 (2009)] such method was applied to coupled map lattices (CMLs). It was demonstrated that by adjusting the wavelet constant of the method can greatly increase the applicable range of coupling strengths, the parameters, range of the individual oscillator, and the number of nodes for local synchronization of CMLs. No analytical proof is given there. In this paper, the optimal or near optimal wavelet constant can be explicitly identified. As a result, the above described scenario can be rigorously verified. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525802]en_US
dc.language.isoen_USen_US
dc.titleThe theory of wavelet transform method on chaotic synchronization of coupled map latticesen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.3525802en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL PHYSICSen_US
dc.citation.volume52en_US
dc.citation.issue1en_US
dc.citation.epageen_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000286898400009-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000286898400009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.