Full metadata record
DC FieldValueLanguage
dc.contributor.authorJen, Tzu-Chengen_US
dc.contributor.authorWang, Sheng-Jyhen_US
dc.date.accessioned2014-12-08T15:38:10Z-
dc.date.available2014-12-08T15:38:10Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7994-8en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/26188-
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2010.5650002en_US
dc.description.abstractIn this paper, a Bayesian framework is proposed for image enhancement. We model the image enhancement problem as a maximum a posteriori (MAP) estimation problem and the posteriori distribution function is formulated based on the local structures and local gradients of the given image. By solving the MAP estimation problem, image contrast gets properly enhanced while image noise gets suppressed at the same time. Moreover, since directly solving an MAP estimation problem is impractical for real-time applications, we further simplify the process to generate an intensity mapping function that achieves comparable performance in image enhancement. Simulation results have demonstrated the applicability of the proposed method in providing a flexible and efficient way for image enhancement.en_US
dc.language.isoen_USen_US
dc.subjectImage Enhancementen_US
dc.subjectMAP estimationen_US
dc.titleAN EFFICIENT BAYESIAN FRAMEWORK FOR IMAGE ENHANCEMENT WITH SPATIAL CONSIDERATIONen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ICIP.2010.5650002en_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSINGen_US
dc.citation.spage3285en_US
dc.citation.epage3288en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000287728003091-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000287728003091.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.