Full metadata record
DC FieldValueLanguage
dc.contributor.authorLing, Chih-Hungen_US
dc.contributor.authorLiang, Yu-Mingen_US
dc.contributor.authorLin, Chia-Wenen_US
dc.contributor.authorChen, Yong-Shengen_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.date.accessioned2014-12-08T15:38:12Z-
dc.date.available2014-12-08T15:38:12Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7994-8en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/26199-
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2010.5648911en_US
dc.description.abstractThis paper presents a novel scheme for object completion in a video. The framework includes three steps: posture synthesis, graphical model construction, and action prediction. In the very beginning, a posture synthesis method is adopted to enrich the number of postures. Then, all postures are used to build a graphical model of object action which can provide possible motion tendency. We define two constraints to confine the motion continuity property. With the two constraints, possible candidates between every two consecutive postures are significantly reduced. Finally, we apply the Markov Random Field model to perform global matching. The proposed approach can effectively maintain the temporal continuity of the reconstructed motion. The advantage of this action prediction strategy is that it can handle the cases such as non-periodic motion or complete occlusion.en_US
dc.language.isoen_USen_US
dc.subjectvideo inpaintingen_US
dc.subjectobject completionen_US
dc.subjectaction predictionen_US
dc.subjectsynthetic postureen_US
dc.subjectmotion animationen_US
dc.titleVIDEO OBJECT INPAINTING USING MANIFOLD-BASED ACTION PREDICTIONen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ICIP.2010.5648911en_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSINGen_US
dc.citation.spage425en_US
dc.citation.epage428en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000287728000105-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000287728000105.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.