完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.contributor.authorGau, Hwa-Longen_US
dc.date.accessioned2014-12-08T15:38:13Z-
dc.date.available2014-12-08T15:38:13Z-
dc.date.issued2010-12-30en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2010.08.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/26204-
dc.description.abstractFor an n-by-n matrix A, its Crawford number c(A) (resp., generalized Crawford number C(A)) is, by definition, the distance from the origin to its numerical range W(A) (resp., the boundary of its numerical range partial derivative W(A)). It is shown that if A has eigenvalues lambda(1), ..., lambda(n) An arranged so that vertical bar lambda(1)vertical bar >= ... >= vertical bar lambda(n)vertical bar, then (lim) over bar (k) c(A(k))(1/k) (resp., (lim) over bar (k) C(A(k))(1/k))equals 0 or vertical bar lambda(n)vertical bar (resp., vertical bar lambda(j)vertical bar for some j, 1 <= j <= n). For a normal A. more can be said, namely, (lim) over bar (k) c(A(k))(1/k) = vertical bar lambda(n)vertical bar (resp., (lim) over bar (k) C(A(k))(1/k) = vertical bar lambda(j)vertical bar for some j, 3 <= j <= n). In these cases, the above possible values can all be assumed by some A. (C) 2010 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectCrawford numberen_US
dc.subjectGeneralized Crawford numberen_US
dc.titleCrawford numbers of powers of a matrixen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2010.08.004en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume433en_US
dc.citation.issue11-12en_US
dc.citation.spage2243en_US
dc.citation.epage2254en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000283893700040-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000283893700040.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。