完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChin, Yien_US
dc.contributor.authorTsai, Chun-Jenen_US
dc.date.accessioned2014-12-08T15:38:17Z-
dc.date.available2014-12-08T15:38:17Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7994-8en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/26232-
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2010.5652489en_US
dc.description.abstractIn this paper, a dense motion field estimation technique based on the Bayesian framework is proposed to estimate the true dense motion fields of video sequences. Previous stochastic techniques of dense motion field estimation adopts piecewise smooth motion model and use MAP estimation to find the motion field with joint minimization of motion compensation errors and maximization of motion smoothness. However, such random process does not guarantee to converge to the true motion field. In this paper, the motion of landmark points in the video sequence is introduced into the MAP estimation process to regularize the estimated motion field. Experimental results show that the proposed algorithm produces estimated motion fields which preserve piecewise smooth nature and are visually close to the true motion of the video sequences.en_US
dc.language.isoen_USen_US
dc.titleBAYESIAN DENSE MOTION FIELD ESTIMATION WITH LANDMARK CONSTRAINTen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ICIP.2010.5652489en_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSINGen_US
dc.citation.spage773en_US
dc.citation.epage776en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000287728000191-
顯示於類別:會議論文


文件中的檔案:

  1. 000287728000191.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。