標題: Learning effective classifiers with Z-value measure based on genetic programming
作者: Chien, BC
Lin, JY
Yang, WP
資訊工程學系
Department of Computer Science
關鍵字: knowledge discovery;machine learning;genetic programming;classification;Z-value measure
公開日期: 1-十月-2004
摘要: This paper presents a learning scheme for data classification based on genetic programming. The proposed learning approach consists of an adaptive incremental learning strategy and distance-based fitness functions for generating the discriminant functions using genetic programming. To classify data using the discriminant functions effectively, the mechanism called Z-value measure is developed. Based on the Z-value measure, we give two classification algorithms to resolve ambiguity among the discriminant functions. The experiments show that the proposed approach has less training time than previous GP learning methods. The learned classifiers also have high accuracy of classification in comparison with the previous classifiers. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
URI: http://dx.doi.org/10.1016/j.patcog.2004.03.016
http://hdl.handle.net/11536/26333
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2004.03.016
期刊: PATTERN RECOGNITION
Volume: 37
Issue: 10
起始頁: 1957
結束頁: 1972
顯示於類別:期刊論文


文件中的檔案:

  1. 000223004500001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。