Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Tsai, CH | en_US |
| dc.contributor.author | Tan, JJM | en_US |
| dc.contributor.author | Hsu, LH | en_US |
| dc.date.accessioned | 2014-12-08T15:38:30Z | - |
| dc.date.available | 2014-12-08T15:38:30Z | - |
| dc.date.issued | 2004-09-30 | en_US |
| dc.identifier.issn | 0020-0190 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.ipl.2004.05.013 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/26363 | - |
| dc.description.abstract | In a graph G, a k-container C-k(u, v) is a set of k disjoint paths joining u and v. A k-container C-k(u, V) is K*-container if every vertex of G is passed by some path in C-k(u, v). A graph G is k*-connected if there exists a k*-container between any two vertices. An m-regular graph G is super-connected if G is k*-connected for any k with 1 less than or equal to k less than or equal to m. In this paper, we prove that the recursive circulant graphs G(2(m), 4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m not equal 2. (C) 2004 Elsevier B.V. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | super-connected | en_US |
| dc.subject | container | en_US |
| dc.subject | recursive circulant | en_US |
| dc.subject | interconnection networks | en_US |
| dc.title | The super-connected property of recursive circulant graphs | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.ipl.2004.05.013 | en_US |
| dc.identifier.journal | INFORMATION PROCESSING LETTERS | en_US |
| dc.citation.volume | 91 | en_US |
| dc.citation.issue | 6 | en_US |
| dc.citation.spage | 293 | en_US |
| dc.citation.epage | 298 | en_US |
| dc.contributor.department | 資訊工程學系 | zh_TW |
| dc.contributor.department | Department of Computer Science | en_US |
| dc.identifier.wosnumber | WOS:000223598900007 | - |
| dc.citation.woscount | 22 | - |
| Appears in Collections: | Articles | |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.

