完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, GJ | en_US |
dc.contributor.author | Chen, CY | en_US |
dc.contributor.author | Chen, YP | en_US |
dc.date.accessioned | 2014-12-08T15:38:32Z | - |
dc.date.available | 2014-12-08T15:38:32Z | - |
dc.date.issued | 2004-09-01 | en_US |
dc.identifier.issn | 1382-6905 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1023/B:JOCO.0000038912.82046.17 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26385 | - |
dc.description.abstract | This paper studies the following variations of arboricity of graphs. The vertex ( respectively, tree) arboricity of a graph G is the minimum number va( G) ( respectively, ta( G)) of subsets into which the vertices of G can be partitioned so that each subset induces a forest ( respectively, tree). This paper studies the vertex and the tree arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness. The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar graphs. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | arboricity | en_US |
dc.subject | acyclic | en_US |
dc.subject | tree | en_US |
dc.subject | block-cactus graph | en_US |
dc.subject | series-parallel graph | en_US |
dc.subject | cograph | en_US |
dc.subject | girth | en_US |
dc.subject | planar graph | en_US |
dc.subject | hamiltonian cycle | en_US |
dc.title | Vertex and tree arboricities of graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1023/B:JOCO.0000038912.82046.17 | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL OPTIMIZATION | en_US |
dc.citation.volume | 8 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 295 | en_US |
dc.citation.epage | 306 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000223483800004 | - |
dc.citation.woscount | 8 | - |
顯示於類別: | 期刊論文 |