完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, GJen_US
dc.contributor.authorChen, CYen_US
dc.contributor.authorChen, YPen_US
dc.date.accessioned2014-12-08T15:38:32Z-
dc.date.available2014-12-08T15:38:32Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1023/B:JOCO.0000038912.82046.17en_US
dc.identifier.urihttp://hdl.handle.net/11536/26385-
dc.description.abstractThis paper studies the following variations of arboricity of graphs. The vertex ( respectively, tree) arboricity of a graph G is the minimum number va( G) ( respectively, ta( G)) of subsets into which the vertices of G can be partitioned so that each subset induces a forest ( respectively, tree). This paper studies the vertex and the tree arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness. The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar graphs.en_US
dc.language.isoen_USen_US
dc.subjectarboricityen_US
dc.subjectacyclicen_US
dc.subjecttreeen_US
dc.subjectblock-cactus graphen_US
dc.subjectseries-parallel graphen_US
dc.subjectcographen_US
dc.subjectgirthen_US
dc.subjectplanar graphen_US
dc.subjecthamiltonian cycleen_US
dc.titleVertex and tree arboricities of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/B:JOCO.0000038912.82046.17en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume8en_US
dc.citation.issue3en_US
dc.citation.spage295en_US
dc.citation.epage306en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000223483800004-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000223483800004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。