Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, TMen_US
dc.contributor.authorLin, WWen_US
dc.contributor.authorLiu, JLen_US
dc.contributor.authorWang, WCen_US
dc.date.accessioned2014-12-08T15:38:35Z-
dc.date.available2014-12-08T15:38:35Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn0895-7177en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.mcm.2003.11.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/26401-
dc.description.abstractThis paper presents various fixed-point methods for computing the ground state energy and its associated wave function of a semiconductor quantum dot model. The discretization of the three-dimensional Schrodinger equation leads to a large-scale cubic matrix polynomial eigenvalue problem for which the desired eigenvalue is embedded in the interior of the spectrum. The cubic problem is reformulated in several forms so that the desired eigenpair becomes a fixed point of the new formulations. Several algorithms are then proposed for solving the fixed-point problem. Numerical results show that the simple fixed-point method with acceleration schemes can be very efficient and stable. (C) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcubic eigenvalue problemen_US
dc.subjectfixed-point methoden_US
dc.subjectlinear Jacobi-Davidson methoden_US
dc.subjectlinear successive iterationsen_US
dc.subject3D Schrodinger equationen_US
dc.titleFixed-point methods for a semiconductor quantum dot modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2003.11.006en_US
dc.identifier.journalMATHEMATICAL AND COMPUTER MODELLINGen_US
dc.citation.volume40en_US
dc.citation.issue5-6en_US
dc.citation.spage519en_US
dc.citation.epage533en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000225058900006-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000225058900006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.