Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, CMen_US
dc.contributor.authorFu, HLen_US
dc.contributor.authorRodger, CAen_US
dc.date.accessioned2014-12-08T15:38:49Z-
dc.date.available2014-12-08T15:38:49Z-
dc.date.issued2004-07-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2003.04.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/26572-
dc.description.abstractIn this paper, we extend the work on minimum coverings of K-n with triangles. We prove that when P is any forest on n vertices the multigraph G = K-n boolean OR P can be decomposed into triangles if and only if three trivial necessary conditions are satisfied: (i) each vertex in G has even degree, (ii) each vertex in P has odd degree, and (iii) the number of edges in G is a multiple of 3. This result is of particular interest because the corresponding packing problem where the leave is any forest is yet to be solved. We also consider some other families of packings, and provide a variation on a proof by Colbourn and Rosa which settled the packing problem when P is any 2-regular graph on at most n vertices. (C) 2004 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecttriple systemen_US
dc.subjectcoveringen_US
dc.subjectforesten_US
dc.titleDecomposing K-n UP into trianglesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2003.04.003en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume284en_US
dc.citation.issue1-3en_US
dc.citation.spage131en_US
dc.citation.epage136en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000222553900013-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000222553900013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.