完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, MCen_US
dc.contributor.authorHuang, CYen_US
dc.contributor.authorLin, TSen_US
dc.date.accessioned2014-12-08T15:38:52Z-
dc.date.available2014-12-08T15:38:52Z-
dc.date.issued2004-07-01en_US
dc.identifier.issn0749-159Xen_US
dc.identifier.urihttp://dx.doi.org/10.1002/num.20008en_US
dc.identifier.urihttp://hdl.handle.net/11536/26625-
dc.description.abstractWe develop a simple Dufort-Frankel-type scheme for solving the time-dependent Gross-Pitaevskii equation (GPE). The GPE is a nonlinear Schrodinger equation describing the Bose-Einstein condensation (BEC) at very low temperature. Three different geometries including 1D spherically symmetric, 2D cylindrically symmetric, and 3D anisotropic Cartesian domains are considered. The present finite difference method is explicit, linearly unconditional stable and is able to handle the coordinate singularities in a natural way. Furthermore, the scheme is time reversible and satisfies a discrete analogue of density conservation law. (C) 2004 Wiley Periodicals, Inc.en_US
dc.language.isoen_USen_US
dc.subjectDufort-Frankel schemeen_US
dc.subjectGross-Pitaevskii equationen_US
dc.subjectnonlinear Schrodinger equationen_US
dc.subjectBose-Einstein condensatesen_US
dc.titleA simple Dufort-Frankel-type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometriesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/num.20008en_US
dc.identifier.journalNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.citation.volume20en_US
dc.citation.issue4en_US
dc.citation.spage624en_US
dc.citation.epage638en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000222022400007-
dc.citation.woscount9-
顯示於類別:期刊論文


文件中的檔案:

  1. 000222022400007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。