完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, TLen_US
dc.contributor.authorYang, JCen_US
dc.contributor.authorHuang, LHen_US
dc.date.accessioned2014-12-08T15:39:07Z-
dc.date.available2014-12-08T15:39:07Z-
dc.date.issued2004-06-01en_US
dc.identifier.issn0733-9429en_US
dc.identifier.urihttp://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:6(580)en_US
dc.identifier.urihttp://hdl.handle.net/11536/26730-
dc.description.abstractThe characteristics method by using the cubic-spline interpolation is comparable to the Holly-Preissmann scheme in solving the advection portion of the advection-diffusion equation. In order to conduct a cubic-spline interpolation, an additional constraint must be specified at each endpoint. In general, four types of endpoint constraints are available, i.e., the first derivative, second derivative, quadratic, and not-a-knot constraints. The goal of this paper is to examine each type of endpoint constraints. Two hypothetical cases are used to conduct the investigation. Among the four types of constraints examined herein, the not-a-knot constraint and the first derivative constraint with high-order finite difference approximation yield the best results. However, as far as accuracy and simple implementation are concerned the not-a-knot constraint should be the best choice in solving the advection-diffusion equation.en_US
dc.language.isoen_USen_US
dc.titleCharacteristics method using cubic-spline interpolation for advection-diffusion equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1061/(ASCE)0733-9429(2004)130:6(580)en_US
dc.identifier.journalJOURNAL OF HYDRAULIC ENGINEERING-ASCEen_US
dc.citation.volume130en_US
dc.citation.issue6en_US
dc.citation.spage580en_US
dc.citation.epage585en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.department防災與水環境研究中心zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.contributor.departmentDisaster Prevention and Water Environment Research Centeren_US
dc.identifier.wosnumberWOS:000221608500011-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000221608500011.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。