完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, TY | en_US |
dc.contributor.author | Weng, CW | en_US |
dc.date.accessioned | 2014-12-08T15:39:11Z | - |
dc.date.available | 2014-12-08T15:39:11Z | - |
dc.date.issued | 2004-05-06 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2003.11.004 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26782 | - |
dc.description.abstract | A pooling space is defined to be a ranked partially ordered set with atomic intervals. We show how to construct non-adaptive pooling designs from a pooling space. Our pooling designs are e-error detecting for some e; moreover, e can be chosen to be very large compared with the maximal number of defective items. Eight new classes of non-adaptive pooling designs are given, which are related to the Hamming matroid, the attenuated space, and six classical polar spaces. We show how to construct a new pooling space from one or two given pooling spaces. (C) 2003 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | pooling space | en_US |
dc.subject | pooling design | en_US |
dc.subject | ranked partially ordered set | en_US |
dc.subject | atomic interval | en_US |
dc.title | Pooling spaces and non-adaptive pooling designs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2003.11.004 | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 282 | en_US |
dc.citation.issue | 1-3 | en_US |
dc.citation.spage | 163 | en_US |
dc.citation.epage | 169 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000221634100016 | - |
dc.citation.woscount | 38 | - |
顯示於類別: | 期刊論文 |