Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, HLen_US
dc.contributor.authorWu, SLen_US
dc.date.accessioned2014-12-08T15:39:11Z-
dc.date.available2014-12-08T15:39:11Z-
dc.date.issued2004-05-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2003.12.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/26784-
dc.description.abstractLet m(1), m(2),..., m(k) be positive integers not less than 3 and let n = Sigma(i=1)(k) m(i). Then, it is proved that the complete graph of order 2n + 1 can be cyclically decomposed into k(2n + 1) cycles such that, for each i = 1, 2,...,k, the cycle of length mi occurs exactly 2n + 1 times. (C) 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcomplete graphen_US
dc.subjectcycle systemen_US
dc.subjectskolem sequenceen_US
dc.subjecthooked skolem sequenceen_US
dc.subjectnear skolem sequenceen_US
dc.titleCyclically decomposing the complete graph into cyclesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2003.12.009en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume282en_US
dc.citation.issue1-3en_US
dc.citation.spage267en_US
dc.citation.epage273en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000221634100029-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000221634100029.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.