Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuan, PGen_US
dc.contributor.authorKao, YMen_US
dc.date.accessioned2019-04-03T06:37:32Z-
dc.date.available2019-04-03T06:37:32Z-
dc.date.issued2004-02-01en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.69.022102en_US
dc.identifier.urihttp://hdl.handle.net/11536/27048-
dc.description.abstractWe study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation formula. They reproduce the previous results in the large M (number of boxes) limit. We also discuss the connection between this diffusion equation and the Schrodinger equation of some quantum mechanical problems.en_US
dc.language.isoen_USen_US
dc.titleDrifting diffusion on a circle as continuous limit of a multiurn Ehrenfest modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.69.022102en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume69en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000220255400083en_US
dc.citation.woscount4en_US
Appears in Collections:Articles


Files in This Item:

  1. 7704a2ca6f28e0940df93b36faf8428e.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.