完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLuan, PGen_US
dc.contributor.authorKao, YMen_US
dc.date.accessioned2019-04-03T06:37:32Z-
dc.date.available2019-04-03T06:37:32Z-
dc.date.issued2004-02-01en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.69.022102en_US
dc.identifier.urihttp://hdl.handle.net/11536/27048-
dc.description.abstractWe study the continuous limit of a multibox Erhenfest urn model proposed before by the authors. The evolution of the resulting continuous system is governed by a differential equation, which describes a diffusion process on a circle with a nonzero drifting velocity. The short time behavior of this diffusion process is obtained directly by solving the equation, while the long time behavior is derived using the Poisson summation formula. They reproduce the previous results in the large M (number of boxes) limit. We also discuss the connection between this diffusion equation and the Schrodinger equation of some quantum mechanical problems.en_US
dc.language.isoen_USen_US
dc.titleDrifting diffusion on a circle as continuous limit of a multiurn Ehrenfest modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.69.022102en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume69en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000220255400083en_US
dc.citation.woscount4en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 7704a2ca6f28e0940df93b36faf8428e.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。