完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPearn, WLen_US
dc.contributor.authorLin, GHen_US
dc.contributor.authorWang, KHen_US
dc.date.accessioned2014-12-08T15:39:41Z-
dc.date.available2014-12-08T15:39:41Z-
dc.date.issued2004-02-01en_US
dc.identifier.issn0033-5177en_US
dc.identifier.urihttp://dx.doi.org/10.1023/B:QUQU.0000013245.13104.1den_US
dc.identifier.urihttp://hdl.handle.net/11536/27105-
dc.description.abstractProcess yield is the most common criterion used in the manufacturing industry for measuring process performance. A measurement index, called S-pk, has been proposed to calculate the yield for normal processes. The measurement index S-pk establishes the relationship between the manufacturing specifications and the actual process performance, which provides an exact measure on process yield. Unfortunately, the sampling distribution of the estimated S-pk is mathematically intractable. Therefore, process performance testing cannot be performed. In this paper; we consider a normal approximation to the distribution of the estimated S-pk, and investigate its accuracy computationally. We compare the critical values calculated from the approximate distribution with those obtained using the standard simulation technique, for various commonly used quality requirements. Extensive computational results are provided and analyzed. The investigation is useful to the practitioners for making decisions in testing process performance based on the yield.en_US
dc.language.isoen_USen_US
dc.subjectcritical valueen_US
dc.subjectprocess yielden_US
dc.titleNormal approximation to the distribution of the estimated yield index S-pken_US
dc.typeArticleen_US
dc.identifier.doi10.1023/B:QUQU.0000013245.13104.1den_US
dc.identifier.journalQUALITY & QUANTITYen_US
dc.citation.volume38en_US
dc.citation.issue1en_US
dc.citation.spage95en_US
dc.citation.epage111en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000188424100007-
dc.citation.woscount14-
顯示於類別:期刊論文


文件中的檔案:

  1. 000188424100007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。