Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, YCen_US
dc.contributor.authorTsai, CHen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorTan, JJMen_US
dc.date.accessioned2014-12-08T15:39:43Z-
dc.date.available2014-12-08T15:39:43Z-
dc.date.issued2004-01-30en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0096-3003(02)00933-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/27123-
dc.description.abstractA k-regular Hamiltonian and Hamiltonian connected graph G is super fault-tolerant Hamiltonian if G remains Hamiltonian after removing at most k - 2 nodes and/or edges and remains Hamiltonian connected after removing at most k - 3 nodes and/or edges. A super fault-tolerant Hamiltonian graph has a certain optimal flavor with respect to the fault-tolerant Hamiltonicity and Hamiltonian connectivity. In this paper, we investigate a construction scheme to construct super fault-tolerant Hamiltonian graphs. In particularly, twisted-cubes, crossed-cubes, and Mobius cubes are all special cases of this construction scheme. Therefore, they are all super fault-tolerant Hamiltonian graphs. (C) 2003 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectk-regularen_US
dc.subjectk-Hamiltonianen_US
dc.subjectk-Hamiltonian connecteden_US
dc.subjectfault-toleranten_US
dc.subjectsuper fault-tolerant Hamiltonianen_US
dc.titleOn some super fault-tolerant Hamiltonian graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0096-3003(02)00933-5en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume148en_US
dc.citation.issue3en_US
dc.citation.spage729en_US
dc.citation.epage741en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000187619800010-
dc.citation.woscount15-
Appears in Collections:Articles


Files in This Item:

  1. 000187619800010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.