Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, HCen_US
dc.contributor.authorLi, TKen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:39:46Z-
dc.date.available2014-12-08T15:39:46Z-
dc.date.issued2004-01-01en_US
dc.identifier.issn0018-9340en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TC.2004.1255789en_US
dc.identifier.urihttp://hdl.handle.net/11536/27168-
dc.description.abstractThe arrangement graph A(n,k) is a generalization of the star graph. There are some results concerning fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graph. However, these results are restricted in some particular cases and, thus, are less completed. In this paper, we improve these results and obtain a stronger and simpler statement. Let n - k greater than or equal to 2 and F subset of or equal to V(A(n,k)) boolean OR E(A(n,k)). We prove that A(n,k) - F is Hamiltonian if F less than or equal to k(n - k) - 2 and A(n,k) - F is Hamiltonian connected if F less than or equal to k(n - k) - 3. These results are optimal.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian cycleen_US
dc.subjectHamiltonian connecteden_US
dc.subjectfault toleranceen_US
dc.subjectarrangement graphen_US
dc.titleFault hamiltonicity and fault hamiltonian connectivity of the arrangement graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TC.2004.1255789en_US
dc.identifier.journalIEEE TRANSACTIONS ON COMPUTERSen_US
dc.citation.volume53en_US
dc.citation.issue1en_US
dc.citation.spage39en_US
dc.citation.epage53en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000187318400003-
dc.citation.woscount57-
Appears in Collections:Articles


Files in This Item:

  1. 000187318400003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.