Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, TC | en_US |
dc.contributor.author | Yan, ST | en_US |
dc.contributor.author | Liu, PT | en_US |
dc.contributor.author | Wang, MC | en_US |
dc.contributor.author | Sze, SM | en_US |
dc.date.accessioned | 2014-12-08T15:39:54Z | - |
dc.date.available | 2014-12-08T15:39:54Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.issn | 1099-0062 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/27263 | - |
dc.identifier.uri | http://dx.doi.org/10.1149/1.1738473 | en_US |
dc.description.abstract | A superior oxide/nitride/oxide (ONO) gate stack was demonstrated. High density plasma chemical vapor deposition was used to deposit the silicon nitride layer instead of the conventional low-pressure chemical vapor deposition for silicon/oxide/nitride/oxide/silicon technology. The densified nitride layer was performed by high-temperature dry oxidation to form a thermally grown blocking oxide layer on the silicon nitride rather than a deposited oxide layer. The ONO gate stack shows large memory window, high breakdown voltage, and reliable endurance characteristics, which is a potential candidate for future nonvolatile memory technology. (C) 2004 The Electrochemical Society. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A method for fabricating a superior oxide/nitride/oxide gate stack | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1149/1.1738473 | en_US |
dc.identifier.journal | ELECTROCHEMICAL AND SOLID STATE LETTERS | en_US |
dc.citation.volume | 7 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | G138 | en_US |
dc.citation.epage | G140 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000221887600020 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |