Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, SJen_US
dc.contributor.authorSheng, WDen_US
dc.contributor.authorHawrylak, Pen_US
dc.date.accessioned2019-04-03T06:38:38Z-
dc.date.available2019-04-03T06:38:38Z-
dc.date.issued2003-12-01en_US
dc.identifier.issn2469-9950en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.68.235330en_US
dc.identifier.urihttp://hdl.handle.net/11536/27336-
dc.description.abstractWe develop a theory of excitonic artificial atoms in strong magnetic fields. The excitonic atoms are formed by N electrons and holes confined in a quantum dot. The single-particle levels are described by the Fock-Darwin spectrum in a magnetic field. The magnetic field induces crossing of energy levels and allows us to engineer degenerate shells. We apply exact diagonalization techniques to calculate the magnetic-field evolution of the ground state of the N-electron-hole complex and its emission spectra. We focus on degenerate shells and show that excitons condense into correlated states due to hidden symmetry. We relate the Fock-Darwin spectrum, hidden symmetries, and direct and exchange interaction among particles to the emission spectra as a function of number of electron-hole pairs (excitation power) and magnetic field.en_US
dc.language.isoen_USen_US
dc.titleTheory of excitonic artificial atoms: InGaAs/GaAs quantum dots in strong magnetic fieldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.68.235330en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume68en_US
dc.citation.issue23en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000188186400087en_US
dc.citation.woscount26en_US
Appears in Collections:Articles


Files in This Item:

  1. 0ad5bb0f49f73070de859b94157e3bc1.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.