完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, MTen_US
dc.contributor.authorTso, SHen_US
dc.contributor.authorWu, PYen_US
dc.date.accessioned2014-12-08T15:40:01Z-
dc.date.available2014-12-08T15:40:01Z-
dc.date.issued2003-12-01en_US
dc.identifier.issn0379-4024en_US
dc.identifier.urihttp://hdl.handle.net/11536/27342-
dc.description.abstractWe show that for every positive integer k, the k-numerical range of a square-zero operator on a (separable) Hilbert space is an (open or closed) circular disc centered at the origin. The radius and the closedness of the disc can be completely determined in terms of the "singular numbers" of the operator. The k-numerical range of idempotent operators is more difficult to describe since its boundary is in general not any familiar curve. What we do is to give enough information, again in terms of the singular numbers of the idempotent operator under consideration, so as to have a general idea of its shape and location.en_US
dc.language.isoen_USen_US
dc.subjectk-numerical rangeen_US
dc.subjectsquare-zero operatoren_US
dc.subjectidempotent operatoren_US
dc.subjectquadric operatoren_US
dc.titleHigher-dimensional numerical ranges of quadratic operatorsen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF OPERATOR THEORYen_US
dc.citation.volume49en_US
dc.citation.issue1en_US
dc.citation.spage153en_US
dc.citation.epage171en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000183791500010-
dc.citation.woscount4-
顯示於類別:期刊論文