標題: Detection of structural damage via free vibration responses generated by approximating artificial neural networks
作者: Kao, CY
Hung, SL
土木工程學系
Department of Civil Engineering
關鍵字: neural networks;structural damage detection;free vibration responses;system identification;shaking table test;structural health monitoring
公開日期: 1-十一月-2003
摘要: This work presented a novel neural network-based approach for detecting structural damage. The proposed approach involves two steps. The first step, system identification, uses neural system identification networks (NSINs) to identify the undamaged and damaged states of a structural system. The second step, structural damage detection, uses the aforementioned trained NSINs to generate free vibration responses with the same initial condition or impulsive force. Comparing the periods and amplitudes of the free vibration responses of the damaged and undamaged states allows the extent of changes to be assessed. Furthermore, numerical and experimental examples demonstrate the feasibility of applying the proposed method for detecting structural damage. (C) 2003 Elsevier Ltd. All rights reserved.
URI: http://dx.doi.org/10.1016/S0045-7949(03)00323-7
http://hdl.handle.net/11536/27400
ISSN: 0045-7949
DOI: 10.1016/S0045-7949(03)00323-7
期刊: COMPUTERS & STRUCTURES
Volume: 81
Issue: 28-29
起始頁: 2631
結束頁: 2644
顯示於類別:期刊論文


文件中的檔案:

  1. 000186799500008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。