Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, RCen_US
dc.contributor.authorLiu, JLen_US
dc.date.accessioned2014-12-08T15:40:12Z-
dc.date.available2014-12-08T15:40:12Z-
dc.date.issued2003-10-15en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0377-0427(03)00538-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/27460-
dc.description.abstractPicard, Gauss-Seidel, and Jacobi monotone iterative methods are presented and analyzed for the adaptive finite element solution of semiconductor equations in terms of the Slotboom variables. The adaptive meshes are generated by the 1-irregular mesh refinement scheme. Based on these unstructured meshes and a corresponding modification of the Scharfetter-Gummel discretization scheme, it is shown that the resulting finite element stiffness matrix is an M-matrix which together with the Shockley-Read-Hall model for the generation-recombination rate leads to an existence-uniqueness-comparison theorem with simple upper and lower solutions as initial iterates. Numerical results of simulations on a MOSFET device model are given to illustrate the accuracy and efficiency of the adaptive and monotone properties of the present methods. (C) 2003 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectmonotone iterationen_US
dc.subjectdrift-diffusion modelen_US
dc.subjectadaptive finite elementen_US
dc.titleMonotone iterative methods for the adaptive finite element solution of semiconductor equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0377-0427(03)00538-7en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume159en_US
dc.citation.issue2en_US
dc.citation.spage341en_US
dc.citation.epage364en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000186544800009-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000186544800009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.