Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chen, RC | en_US |
| dc.contributor.author | Liu, JL | en_US |
| dc.date.accessioned | 2014-12-08T15:40:12Z | - |
| dc.date.available | 2014-12-08T15:40:12Z | - |
| dc.date.issued | 2003-10-15 | en_US |
| dc.identifier.issn | 0377-0427 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/S0377-0427(03)00538-7 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/27460 | - |
| dc.description.abstract | Picard, Gauss-Seidel, and Jacobi monotone iterative methods are presented and analyzed for the adaptive finite element solution of semiconductor equations in terms of the Slotboom variables. The adaptive meshes are generated by the 1-irregular mesh refinement scheme. Based on these unstructured meshes and a corresponding modification of the Scharfetter-Gummel discretization scheme, it is shown that the resulting finite element stiffness matrix is an M-matrix which together with the Shockley-Read-Hall model for the generation-recombination rate leads to an existence-uniqueness-comparison theorem with simple upper and lower solutions as initial iterates. Numerical results of simulations on a MOSFET device model are given to illustrate the accuracy and efficiency of the adaptive and monotone properties of the present methods. (C) 2003 Elsevier B.V. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | monotone iteration | en_US |
| dc.subject | drift-diffusion model | en_US |
| dc.subject | adaptive finite element | en_US |
| dc.title | Monotone iterative methods for the adaptive finite element solution of semiconductor equations | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/S0377-0427(03)00538-7 | en_US |
| dc.identifier.journal | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | en_US |
| dc.citation.volume | 159 | en_US |
| dc.citation.issue | 2 | en_US |
| dc.citation.spage | 341 | en_US |
| dc.citation.epage | 364 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000186544800009 | - |
| dc.citation.woscount | 6 | - |
| Appears in Collections: | Articles | |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.

