Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, YPen_US
dc.contributor.authorPhoong, SMen_US
dc.date.accessioned2014-12-08T15:40:20Z-
dc.date.available2014-12-08T15:40:20Z-
dc.date.issued2003-09-01en_US
dc.identifier.issn1053-587Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TSP.2003.815391en_US
dc.identifier.urihttp://hdl.handle.net/11536/27544-
dc.description.abstractWe consider the minimization of uncoded bit error rate (BER) for the orthogonal frequency division multiplexing (OFDM) system with an orthogonal precoder. We analyze the BER performance of precoded OFDM systems with zero forcing and minimum mean squared error (MMSE) receivers. In the case of MMSE receivers, we show that for quadrature phase shift keying (QPSK), there exists a class of optimal precoders that are channel independent. Examples of this class include the discrete Fourier transform (DFT) matrix and the Hadamard matrix. When the precoder is the DFT matrix, the resulting optimal transceiver becomes the single carrier system with cyclic prefix (SC-CP) system. We also show that the worst solution corresponds to the conventional OFDM system; the conventional OFDM system has the largest BER. In the case of zero forcing receivers, the design of optimal transceiver depends on signal-to-noise ratio (SNR). For higher SNR, solutions of optimal precoders are the same as those of MMSE receivers.en_US
dc.language.isoen_USen_US
dc.subjectBER optimal multicarrieren_US
dc.subjectOFDMen_US
dc.subjectprecoded OFDMen_US
dc.subjectsingle carrieren_US
dc.titleBER minimized OFDM systems with channel independent precodersen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSP.2003.815391en_US
dc.identifier.journalIEEE TRANSACTIONS ON SIGNAL PROCESSINGen_US
dc.citation.volume51en_US
dc.citation.issue9en_US
dc.citation.spage2369en_US
dc.citation.epage2380en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000184861900011-
dc.citation.woscount82-
Appears in Collections:Articles


Files in This Item:

  1. 000184861900011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.