完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHung, SLen_US
dc.contributor.authorHuang, CSen_US
dc.contributor.authorWen, CMen_US
dc.contributor.authorHsu, YCen_US
dc.date.accessioned2014-12-08T15:40:24Z-
dc.date.available2014-12-08T15:40:24Z-
dc.date.issued2003-09-01en_US
dc.identifier.issn1093-9687en_US
dc.identifier.urihttp://hdl.handle.net/11536/27577-
dc.description.abstractThis study presents a wavelet neural network-based approach to dynamically identifying and modeling a building structure. By combining wavelet decomposition and artificial neural networks (ANN), wavelet neural networks (WNN) are used for solving chaotic signal processing. The basic operations and training method of wavelet neural networks are briefly introduced, since these networks can approximate universal functions. The feasibility of structural behavior modeling and the possibility of structural health monitoring using wavelet neural networks are investigated. The practical application of a wavelet neural network to the structural dynamic modeling of a building frame in shaking tests is considered in an example. Structural acceleration responses under various levels of the strength of the Kobe earthquake were used to train and then test the WNNs. The results reveal that the WNNs not only identify the structural dynamic model, but also can be applied to monitor the health condition of a building structure under strong external excitation.en_US
dc.language.isoen_USen_US
dc.titleNonparametric identification of a building structure from experimental data using wavelet neural networken_US
dc.typeArticleen_US
dc.identifier.journalCOMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERINGen_US
dc.citation.volume18en_US
dc.citation.issue5en_US
dc.citation.spage356en_US
dc.citation.epage368en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000184144500003-
dc.citation.woscount21-
顯示於類別:期刊論文


文件中的檔案:

  1. 000184144500003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。