Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiau, JJHen_US
dc.contributor.authorChen, LAen_US
dc.date.accessioned2014-12-08T15:40:26Z-
dc.date.available2014-12-08T15:40:26Z-
dc.date.issued2003-09-01en_US
dc.identifier.issn1369-1473en_US
dc.identifier.urihttp://hdl.handle.net/11536/27600-
dc.description.abstractThis paper introduces a multivariate parallelogram that can play the role of the univariate quantile in the location model, and uses it to define a multivariate trimmed mean. It assesses the asymptotic efficiency of the proposed multivariate trimmed mean by its asymptotic variance and by Monte Carlo simulation.en_US
dc.language.isoen_USen_US
dc.subjectmultivariate parallelogramen_US
dc.subjectquantileen_US
dc.subjecttrimmed meanen_US
dc.titleA multivariate parallelogram and its application to multivariate trimmed meansen_US
dc.typeArticleen_US
dc.identifier.journalAUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICSen_US
dc.citation.volume45en_US
dc.citation.issue3en_US
dc.citation.spage343en_US
dc.citation.epage352en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000184955400007-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000184955400007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.