Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, CHen_US
dc.date.accessioned2014-12-08T15:40:26Z-
dc.date.available2014-12-08T15:40:26Z-
dc.date.issued2003-09-01en_US
dc.identifier.issn0028-3045en_US
dc.identifier.urihttp://dx.doi.org/10.1002/net.10083en_US
dc.identifier.urihttp://hdl.handle.net/11536/27603-
dc.description.abstractIn this paper, we study the maximal length of cycle embedding in a faulty wrapped butterfly graph BFn with at most two faults in vertices and/or edges. When there is one vertex fault and one edge fault, we prove that the maximum cycle length is n2(n) - 2 if n is even and n2(n) - 1 if n is odd. When there are two faulty vertices, the maximum cycle length is n2(n) - 2 for odd n. All these results are optimal because the wrapped butterfly graph is bipartite if and only if n is even. (C) 2003 Wiley Periodicals, Inc.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian cycleen_US
dc.subjectwrapped butterflyen_US
dc.subjectfault-toleranten_US
dc.subjectcycle embeddingen_US
dc.subjectCayley graphen_US
dc.titleCycle embedding in faulty wrapped butterfly graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/net.10083en_US
dc.identifier.journalNETWORKSen_US
dc.citation.volume42en_US
dc.citation.issue2en_US
dc.citation.spage85en_US
dc.citation.epage96en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000184921100002-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000184921100002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.