完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, YCen_US
dc.contributor.authorTan, JJMen_US
dc.contributor.authorHsu, LHen_US
dc.contributor.authorKao, SSen_US
dc.date.accessioned2014-12-08T15:40:30Z-
dc.date.available2014-12-08T15:40:30Z-
dc.date.issued2003-08-10en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0096-3003(02)00223-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/27642-
dc.description.abstractLet G = (V, E) be a k-regular graph with connectivity K and edge connectivity. G is maximum connected if kappa = k, and G is maximum edge connected if lambda = k. Moreover, G is super-connected if it is a complete graph, or it is maximum connected and every minimum vertex cut is {x(v,x) is an element of E} for some vertex v is an element of V; and G is super-edge-connected if it is maximum edge connected and every minimum edge disconnecting set is {(v,x)(v,x) is an element of E} for some vertex v is an element of V. In this paper, we present three schemes for constructing graphs that are super-connected and super-edge-connected. Applying these construction schemes, we can easily discuss the super-connected property and the super-edge-connected property of hypercubes, twisted cubes, crossed cubes, mobius cubes, split-stars, and recursive circulant graphs. (C) 2002 Elsevier Science Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectconnectivityen_US
dc.subjectedge connectivityen_US
dc.subjectsuper-connectivityen_US
dc.subjectsuper-edge-connectivityen_US
dc.titleSuper-connectivity and super-edge-connectivity for some interconnection networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0096-3003(02)00223-0en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume140en_US
dc.citation.issue2-3en_US
dc.citation.spage245en_US
dc.citation.epage254en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000180606600007-
dc.citation.woscount40-
顯示於類別:期刊論文


文件中的檔案:

  1. 000180606600007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。