Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiam, KHen_US
dc.contributor.authorLai, MCen_US
dc.contributor.authorGreenside, HSen_US
dc.date.accessioned2019-04-03T06:38:15Z-
dc.date.available2019-04-03T06:38:15Z-
dc.date.issued2003-08-01en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.68.026705en_US
dc.identifier.urihttp://hdl.handle.net/11536/27653-
dc.description.abstractAn efficient semi-implicit second-order-accurate finite-difference method is described for studying incompressible Rayleigh-Benard convection in a box, with sidewalls that are periodic, thermally insulated, or thermally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the solution of four Helmholtz equations and one Poisson equation, and these are solved by fast direct methods. The method is numerically stable even though all field values are placed on a single nonstaggered mesh commensurate with the boundaries. The efficiency and accuracy of the method are characterized for several representative convection problems.en_US
dc.language.isoen_USen_US
dc.titleEfficient algorithm on a nonstaggered mesh for simulating Rayleigh-Benard convection in a boxen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.68.026705en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume68en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000185194400114en_US
dc.citation.woscount3en_US
Appears in Collections:Articles


Files in This Item:

  1. d11f6a13dcf0e48daf03d63b443ffb90.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.